Complex Numbers 2

- 1. Evaluate $\left(\frac{\sqrt{3}+i}{2}\right)^3$ using the binomial theorem.
- 2. Expand $(\cos \theta + i \sin \theta)^4$ using the binomial theorem. Hence express $\cos 4\theta$ as a polynomial in $\cos \theta$.
- 3. Find the fourth roots of -81*i*, and illustrate them on an Argand diagram.
- 4. By writing *z* in the form z = x + iy:
 - a) Solve the equation $z^2 = |z|^2 4$;
 - b) Find the solutions to the equation $z^2 = i(|z|^2 4)$.
- 5. Interpret geometrically in the complex plane the equation |z-2| = |z-6|, showing your answer on an Argand diagram.